
Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

Turbo Charge CPU
Utilization in Fork/Join

Using the
ManagedBlocker

Dr Heinz M. Kabutz  
Last Updated 2017-05-09

1

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

Regular

2

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

ManagedBlocker

3

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

l By Leonardo of Pisa
– F0 = 0
– F1 = 1
– Fn = Fn-1 + Fn-2

l Thus the next number is  
equal to the sum of the  
two previous numbers

– e.g. 0, 1, 1, 2, 3, 5, 8, 13, 21, …

l The numbers get large quickly, like Australian rabbit population

Speeding Up Fibonacci

4

8

13
21

2 3

5

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

l Taking our recursive definition
– F0 = 0, F1 = 1
– Fn = Fn-1 + Fn-2

l Converting this into Java:

l But this has exponential time complexity, so gets terribly slow

Naive Implementation

5

public long f(int n) {
 if (n <= 1) return n;
 return f(n-1) + f(n-2);
}

8

13
21

2 3

5

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

l Iterative algorithm

l Linear time complexity
– f(1_000_000_000) in 1.7 seconds

• However, long overflows so the result is incorrect
• We can use BigInteger, but its add() is also linear, so time is quadratic

2nd Attempt at Coding Fibonacci

6

public static long f(int n) {
 long n0 = 0, n1 = 1;
 for (int i = 0; i < n; i++) {
 long temp = n1;
 n1 = n1 + n0;
 n0 = temp;
 }
 return n0;
} 8

13
21

2 3

5

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

l Dijkstra’s clever formula
– F2n-1 = Fn-12 + Fn2

– F2n = (2 × Fn-1 + Fn) × Fn

l Logarithmic time complexity
– Multiply in Java BigInteger

• Karatsuba complexity is O(n1.585)
• 3-way Toom Cook complexity is O(n1.465)
• Prior to Java 8, multiply() had complexity O(n2)
• BigInteger.multiply() single-threaded in Java - we’ll fix that later

3rd Attempt Dijkstra's Sum of Squares

7

8

13
21

2 3

5

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

l We implement this algorithm using BigInteger
– F2n-1 = Fn-12 + Fn2

– F2n = (2 × Fn-1 + Fn) × Fn

Demo 1: Dijkstra’s Sum of Squares

8

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

l We can parallelize by using common Fork/Join Pool
– Next we fork() the 1st task, do the 2nd and then join 1st

Demo 2: Parallelize Our Algorithm

9

RecursiveTask<BigInteger> f0_task = new RecursiveTask<BigInteger>() { 
 protected BigInteger compute() { 
 return f(half - 1); 
 } 
};
f0_task.fork(); 
BigInteger f1 = f(half); 
BigInteger f0 = f0_task.join();

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

l Let’s hack fork/join into:
– multiplyToomCook3()
– squareToomCook3()

l These probably won’t reach the threshold
– multiplyKaratsuba()
– squareKaratsuba()

l Choose modified BigInteger with
– -Xbootclasspath/p:<path_to_hack>

Demo 3: Parallelize BigInteger

10

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

Java Specialists Newsletter
Say “hi” or subscribe

http://tinyurl.com/devoxxuk17

11

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

l Dijkstra's Sum of Squares needs to work out some values
several times. Cache results to avoid this.

– Careful to avoid a memory leak
• No static maps

Demo 4: Cache Results

12

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

l Instead of calculating same value twice:
– Use putIfAbsent() to insert special placeholder
– If result is null, we are first and start work
– If result is the placeholder, we wait

Demo 5: Reserved Caching Scheme

13

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

l ForkJoinPool is configured with desired parallelism
– Number of active threads
– ForkJoinPool mostly used with CPU intensive tasks

l If one of the FJ Threads has to block, a new thread can be
started to take its place

– This is done with the ManagedBlocker

l We use ManagedBlocker to keep parallelism high

Demo 6: ManagedBlocker

14

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

l Implement Fibonacci using
– CompletableFuture with methods

• thenAcceptBothAsync()
• complete()

– What happens with thread creation when you disable the common
ForkJoinPool?
• -Djava.util.concurrent.ForkJoinPool.common.parallelism=0

l Send me your answers here
– http://tinyurl.com/devoxxuk17

Homework:

15

Turbo Charge CPU Utilization in Fork/Join Using the ManagedBlocker
©

 2017 H
einz K

abutz, A
ll R

ights R
eserved

Java Specialists Newsletter
Say “hi” or subscribe

http://tinyurl.com/devoxxuk17

16

